Value of Battery Storage in the 100% RPS Environment

Hawaii Clean Energy Initiative
Hawaii’s Leadership in the Clean Energy Economy

Updates on DOE Energy Storage Work & Other Updates

June 2016
Energy Transition Initiative: Islands

The *Energy Transition Initiative: Islands* is an opportunity for insular areas to define and realize their own vision for a clean energy economy.

**Our Goal/Mission:**

- Accelerate commercial opportunities to transition island economies off imported fossil fuels by focusing on local resources.

**Anticipated Outcomes:**

- Eliminate the dependence of island economies on imported fuels.
- Replicable solutions for others around the world.
# Islands Can Be Deployment Leaders

<table>
<thead>
<tr>
<th></th>
<th>Jurisdiction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Island</td>
</tr>
<tr>
<td>Central Power Stations</td>
<td>✓</td>
</tr>
<tr>
<td>Distributed Generation</td>
<td>✓</td>
</tr>
<tr>
<td>Capacity Requirements</td>
<td>✓</td>
</tr>
<tr>
<td>Reserve Margins / Reliability</td>
<td>✓</td>
</tr>
<tr>
<td>Interconnection</td>
<td>✓</td>
</tr>
<tr>
<td>DG Compensation</td>
<td>✓</td>
</tr>
<tr>
<td>DG Financial Incentives</td>
<td>✓</td>
</tr>
<tr>
<td>Environmental Requirements for Energy Infrastructure</td>
<td>✓</td>
</tr>
<tr>
<td>Transmission</td>
<td>Sometimes / Rarely Shared</td>
</tr>
<tr>
<td>Distribution</td>
<td>✓</td>
</tr>
<tr>
<td>Utility-Led Energy Efficiency</td>
<td>✓</td>
</tr>
<tr>
<td>Energy Efficiency Financial Incentives</td>
<td>✓</td>
</tr>
<tr>
<td>Building Energy Codes</td>
<td>✓*</td>
</tr>
<tr>
<td>Public Transportation</td>
<td>✓</td>
</tr>
<tr>
<td>Alternative Fuel Vehicle Incentives</td>
<td>✓</td>
</tr>
<tr>
<td>Alternative Fuel Infrastructure</td>
<td>✓</td>
</tr>
</tbody>
</table>

* Siting authority of local governments varies under state law

**NB: U.S. Focus.**
Current ETI Decision Support Resources

• **State and Local Energy Data Tool.** SLED helps state and local governments develop long-term energy plans by analyzing and sorting data in real-time, [www.eere.energy.gov/sled](http://www.eere.energy.gov/sled).

• **Energy Scenario Modeling Tool.** Based on user-defined energy information, the scenario tool provides the basis for data-driven discussions on transition pathways and investment priorities, all focused on reaching a user-defined clean energy goal (e.g., 32% by 2030). By modelling the costs of different fuel mixes over time, communities can quickly analyze different pathways to realizing their own clean energy goals.

• **In-Person Training.**
  o *Utility Renewable Energy Integration Information and Support Training:* For utility leadership and engineers interested in successful programmatic and technical integration of distributed generation, including microgrid design.
  o *Policymaker & Program Manager Electric Grid and Renewable Energy Support Training:* For policy and program decision makers interested in baseline technical grid, renewable energy, and program best practices.
“The Islands Playbook (the Playbook) provides an action-oriented guide to successfully initiating, planning and completing a transition to an energy system that primarily relies on local resources to eliminate a dependence on one or two imported fuels.

It is intended to serve as a readily available framework that any community can adapt to organize its own energy transition effort.”
Islands Playbook Content

• **Highlights the process - the *how* - of organizing an energy transition and implementing projects**
  o Eliminating a dependence on imported fuels requires iteration

• **Lessons learned from islands work to date**
  o USVI and Hawaii
  o Aruba, Barbados, Canary Islands

• **Downloadable worksheets and templates**
  o Community organizing tools, such as stakeholder and donor coordination matrices
  o Project management tools, such as a Risk Register and Strengths-Weaknesses-Opportunities-Threats matrix

[www.energy.gov/islandsplaybook](http://www.energy.gov/islandsplaybook)
Playbook Themes

• **Focus on people**
  - Engaging stakeholders proactively
  - Empowering the community to set vision
    - Not just the government and not just the utility
  - Developing human capital
    - Effort not dependent on one administration or one person

• **Focus on projects**
  - Identifying near-term actions that support long-term goals
  - Tracking progress to maintain momentum
  - Improving execution for the next project(s)
Based on experience of USVI and Hawaii

- **Hawaii Energy Goal from 2009**: 70% clean energy goal by 2030, with 40% renewable and 30% efficiency
  - Recently increased to 100% by 2045

- **Hawaii Success Indicators**:
  - Met its 2015 renewable electricity target two years early
  - 226 MW oil-fired generation is scheduled for retirement by 2016
  - Doubled the percentage of electricity supplied from renewable resources

For more background info:
[http://www.hawaiicleanenergyinitiative.org](http://www.hawaiicleanenergyinitiative.org)
A Postcard from the Future? | EnergyBiz

www.energybiz.com/magazine/article/404561/postcard-future

Hawaii is undergoing an energy transformation that has been described as a postcard from the future, and many people are working hard to ensure that the...

NEWS: Hawaii's Advanced Energy "Postcard From the Future"

May 1, 2015 - This week, let Advanced Energy Perspectives take you on a Hawaiian vacation... or, well, we'll discuss the changes in Hawaii's energy mix and...

What comes after net metering: Hawaii's latest postcard from... | UtilityDive

Oct 22, 2015 - The Hawaii Public Utilities Commission closed retail rate net energy... to as postcards from the future because the high penetration of solar on...

Postcard from the future: 122% wind power in Denmark | UtilityDive

Oct 22, 2015 - The renewable energy future postcard...

Renewable Energy Future Postcard | Energy

energy.agwired.com/2015/10/07/renewable-energy-future-postcard/

Oct 7, 2015 - The Institute for Local Self-Reliance (ILSR) has released a new paper, "Hawaii at the Energy Crossroads". The report highlights the fight in...

Hawaii's latest postcard from the future: energy - Reddit

https://www.reddit.com/r/energy/...hawaiis-latest-postcard-from... - Reddit Oct 24, 2015 - discussions in #energy... X, 16 points. 0 comments... Hawaii's latest postcard from the future (utilitydive.com), submitted 22 hours ago by djalzog.

Postcard from the Future: Hawaii | America's Power Plan

americaspowerplan.com/2013/08/hawaii/

But its island environment — from sunny days to active volcanoes — also holds the keys to a future powered by renewable energy. Oil powers all of Hawaii's...
“Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV”

- National Renewable Energy Laboratory
- Funded by Solar Energy Technologies Office
- Conclusion: AES Ilumina PV (Guayama) plant can provide Automatic Generation Control, frequency response faster than synchronous generators, and voltage droop support to PREPA’s grid, with existing hardware and proper communication protocols

Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV

During a significant amount of the test period over a few days, AES PV was the only plant participating in AGC.
Recent Islanded System Work

“Optimization of a Virtual Power Plant to Provide Frequency Support”

- Sandia National Laboratory
- Funded by Solar Energy Technology Office
- Conclusion: **Solar PV can reduce cost of grid operations** by reducing O&M of synchronous generators, even when compensating for curtailment ($20k/day savings using PV as reserves for FW22 on Lanai, Hawaii)

- [http://prod.sandia.gov/techlib/access-control.cgi/2015/1511070r.pdf](http://prod.sandia.gov/techlib/access-control.cgi/2015/1511070r.pdf)
Recent Mainland System Analysis

“Do We Really Need Storage...?”

• NREL PPT

Short answer: Yes

http://www.nrel.gov/docs/fy16osti/66104.pdf
Recent Mainland System Analysis

“Energy Storage Analysis Insights”

- NREL

http://www.nrel.gov/docs/fy16osti/64764.pdf
“Operational Benefits of Meeting California’s Energy Storage Targets”

- NREL
- “Overall, the mandated storage requirement of 1,325 MW was estimated to reduce the total cost of production by up to $78 million per year in the base 33% scenario and $144 million per year in the base 40% scenario.”
- “Between 29% and 67% of these avoided costs in the base cases are due to avoided generator startup costs.”
- “Storage value is contingent on components of electric power markets that are relatively small contributors to aggregate market costs”
- Higher penetrations of solar increased value of storage – By 2X
Recent Storage Market Barriers Work

“DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA”

- Sandia National Lab, EPRI, NRECA
- How-to guide for electric systems engineers/planners, vendors, and investors to aid in the selection, procurement, installation, and/or operation of stationary energy storage systems.
- Relied on input from a variety of stakeholders to ensure different aspects of storage could be presented to different stakeholders: generators and system operators, load-serving entities (LSEs), and customers
Recent Storage Tech Work

“Demonstration of Isothermal Compressed Air Energy Storage to Support Renewable Energy Production”

• National Energy Technology Lab
• 1.5MW ICAES Commercial-scale prototype using foam-based heat transfer, operational since Sept. 2013. Relied on mostly commercially-available parts to achieve relatively low CLOE (under $0.02/kWh), high cycle efficiency (>50%). Standby to full power response is 10 seconds, can applied in both generation and transmission.
• http://www.osti.gov/scitech/servlets/purl/1178542
Recent Storage Modelling Work

“Technoeconomic Modeling of Battery Energy Storage in SAM”

- NREL
- Lead-acid and lithium-ion battery models added to the free, publically available System Advisor Model, which focuses on PV systems.


- PNNL & SNL
- Provides basis for assessing how an ESS will perform with respect to key performance attributes relevant to different applications.
- It is intended to provide a valid and accurate basis for the comparison of different ESSs.
Questions and Discussion

Islands Playbook Website:
www.energy.gov/islandsplaybook

ETI web-site: energy.gov/eere/technology-to-market/energy-transition-initiative

Island Energy Snapshots:
energy.gov/eere/about-us/island-energy-snapshots

Stephen Walls
Stephen.Walls@ee.doe.gov
Pricing Implications of (DER) Battery Storage

- DER technology has effectively unbundled the services that utility provide

- However, energy pricing has not kept up with technological innovation

- Pricing reform needs to accelerate such that technology will be deployed and utilized to lower total costs for all customers
Utility Services

- Energy
  - To power your appliances
- Reliability
  - There when you need it
  - Balancing energy supply and demand
- Power Quality
  - So your equipment won’t fry
The Fixed Costs of Reliability and Power Quality

- **Generation Capacity**
  - The physical asset that generates electricity

- **Transmission**
  - Bulk power movement

- **Distribution Demand**
  - Local delivery network

- **Distribution Customer Costs**
  - The last mile of delivery, meters, call centers, etc.
Fixed Cost Recovery Alternatives

- **Customer Charge ($)**
  - $/month (a per customer charge)
  - Minimum Bill (bill price floor)

- **Demand Charges ($/kW)**
  - On peak (i.e. 4 p.m. to 9 p.m.)
  - Non-coincident (your personal peak demand)
  - Ratchets (minimum level of demand charged based on historical usage)

- **Dynamic Pricing ($/kWh)**
  - System (price adders for times when the system peaks)
  - Distribution (price adders for times when circuits or feeders peak)
  - Oversupply (price discounts during periods of oversupply/curtailment)
Encouraging Efficient Utilization of DER

Avoiding Future Infrastructure Investments

1. Create Market Opportunity
   • Develop and Deploy Pricing

2. Market Deployment
   • Suppliers create value proposition for customers and move product

3. Load Modification Reflected in Forecast
   • Either through change in customer historical use or forecast of product adoption

4. Investments are Deferred or Avoided
   • RFPs reflects reduced capacity or avoided altogether
Managing Complexity with Customer Choice

- Fully Bundled Customers
  - Option available for a fully bundled rate

- Customers Self Providing Services
  Option of sophisticated rate to maximize the realization of value from their DER by themselves or technology supplier

A Question in front of PUC in DER Docket

*What is the level of pricing sophistication necessary for customers who self provide a portion of their own energy service needs to enable efficient DER adoption while ensuring equity in customer cost responsibility?*
Creating the Market Opportunity

Enablement of Price Signals

• Developing Price Signals
  • Data to assign costs to a rate component

• Sending Price Signals
  • Providing the price information to customers

• Billing Price Signals
  • Collecting customer usage data
  • Back office accounting to create a customer bill
Mahalo

Chris Yunker

disconnected@energy.hawaii.gov
HCEI Public Stakeholder Meeting
Energy Storage
June 24, 2016
Hawaii Renewable Portfolio Standard

- 30% by 2020
- 40% by 2030
- 70% by 2040
- 100% by 2045

Hawaii Energy Efficiency Portfolio Standard

- 4,300 GWh of electricity savings by 2030
- PUC set interim standards, for 2015, 2020, and 2025
- 2015 standard: 1,375 GWh in savings was exceeded
Renewable Energy Generation by Resource

509 MW PV in Hawaiian Electric Company grids

Source: Renewable Portfolio Standards Status Reports, 2009-2015 (Hawaii Public Utilities Commission)

Great Progress But a Long Way to Go (Oahu)

Near Future (Oahu Only)

- 125 MW Wind (+25) ~383 GWh (~4.9%)
- 375 MW DPV (+20) ~591 GWh (~7.6%)
- 152 MW CPV (+137) ~293 GWh (~3.8%)
- 69 MW Waste ~390 GWh (~5.2%)
- 120 MW Biofuel ~36 GWh (~0.5%)
- Total RE ~1696 GWh (~21.8%)

375 MW of Distributed PV +152 CPV can be >50% of daytime load but contributes only ~11.5% of annual energy

*Assumes no curtailment

100% RPS by 2045 will require

- Substantial increased renewable energy
- Very significant grid changes
- Novel operating strategies and mitigations
Variability and Curtailment
Wind and Solar Resources

High day-to-day variation

Solar

Wind

Day in the year

Sorted day in the year
Curtailment Looks More Variable than Resource
(Storage Needs Highly Variable Day to Day)

Scenario 3 Daily Curtained Energy

Numbers from Oahu model but illustrative only
Curtailment
2016 plus wind and/or solar for 50% W&S availability on Oahu

Day to day curtailment varies widely

Solar – larger (2x wind) but more uniform day to day

Curtailment ranges from 0 to almost 10 GWh in any day
Curtailment by Hour of Day (ave)

- Solar: Large mid-day peak, none beyond midday
- Wind: Curtailment can occur at any and all hours
- Wind: Curtailment can continue for days or even weeks
- Mixed: Reduced daytime peak, nighttime curtailment reduced
Storage for Different Scenarios
Curtailment at High Penetrations wo Storage (Oahu only)

- Curtailment a strong function of resource used
- Incremental curtailment increases significantly as penetration increases
- Incremental curtailment of solar approaches 100% at <40% penetration
Effect of Storage on Curtailment
Advanced grid, 60% W&S penetration

- Energy storage not effective for shifting curtailed wind
- Storage more effective for solar but more needed earlier
- Clustering of wind days has big effect

Clustering of high and low curtailment days impacts effectiveness of storage

Annual Curtailment (GWh):
- Wind: 23%
- Mixed: 21%
- Solar: 42%

[Graph showing daily curtailment and delivered energy over storage capacity]
Battery Energy Storage System Costs (partial)

- Interconnection studies
- Engineering and design
- Battery
- Battery system (incl inverter and controls)
- Permitting
- Site preparation
- Installation/construction
- Insurance
- Warranties and service
- Decommissioning
- Recycle
Cost of Captured Curtailment

• **Idealized curtailment capture/cost estimate**
  - Assume battery is cycled once per day at full capacity – a 1GWh battery would reduce annual curtailment by 365 GWh per year.
  - Assume 10% annual full cost recovery (cost of capital, lifetime)
  - 100% round trip efficiency

<table>
<thead>
<tr>
<th>Installed cost of storage ($/kWh)</th>
<th>$ 250</th>
<th>$ 500</th>
<th>$ 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional cost of captured curtailed energy ($/kWh)</td>
<td>0.07</td>
<td>0.14</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Other factors may increase cost significantly
- Lifetime < 20 years
- Storage “utilization” – resource and size dependent
- Round trip efficiency
  - H2: 30-40%
  - Pumped hydro: 60-75%
  - Chemical storage: 80-90%

Battery Utilization for 60% W&S
HNEI Storage Projects
Grid Scale BESS Projects (HNEI)

Optimize BESS value to grid while maximizing battery lifetime

Haw’i 10 MW Wind farm at Upolu Point Hawaii Island (1MW)
  • Frequency regulation and wind smoothing

Molokai Secure Renewable Microgrid (2MW)
  • Operating reserves, (fault management), frequency regulation, power smoothing, and peak shifting
  • <50ms response

Campbell Park industrial feeder with high penetration (1MW)
  • Power smoothing, voltage and VAr support, and frequency regulation

HNEI is testing cells in the laboratory to determine expected lifetime under real world conditions
Hawaii Island BESS

- Fast response 1MW, 250kW-hr, nanostructured lithium titanate BESS
- System comprised of 2,688 Li-ion titanate 50 A-Hr cells
- 3 years of operation; >6000 full cycles
- Data collected over wide range of grid conditions with different operating algorithms

Reduces BI frequency variability by up to 40%

Wind smoothing helps meet PPA requirements

Gaining valuable understanding of grid impacts and lifetime
Hawaii Clean Energy Initiative Public Stakeholder Meeting

June 24, 2016
Battery energy storage can restore grid stability in a more renewable-based system

- Fault Occurs @ 1 Second
- ~300 MW PV Trips on O/F @ 60.5 Hz
- Stage 1 @ 58.9 Hz
- Stage 2 @ 58.7 Hz
- Stage 3 @ 58.4 Hz
- Stage 4 @ 58.1 Hz
- Stage 5 @ 57.8 Hz
- Frequency Nadir of ~57.6 Hz
System loads are less predictable and more variable – another role for storage

O’ahu System – Typical Day

February 23, 2015

O’ahu System – Bad Day

February 14, 2015

System Load
Frequency
Typical system load and solar profile – energy and load are not time-matched
TOU rates and demand response can better align demand and PV production.
Mahalo!